Wide Bandgap Organo‐lead Trihalide Perovskites for Solar Cells

نویسندگان

  • Miao Hu
  • Jinsong Huang
چکیده

Methylammonium lead trihalide perovskite (MAPbX3, where MA is methylammonium, and X is a halide)-based solar cells have been extensively investigated recently, with a demonstrated and certified solar power conversion efficiency (PCE) exceeding 20%. To further boost the PCE beyond the Schockley–Queisser limit, tandem structured solar cells have been investigated based on integrating MAPbX3 and the lower bandgap solar cells. Although the best reported efficiency for this type of tandem cells is not close to the theoretically achievable value, mixed-halide perovskite MAPbBrxI3–x is still one of the most promising candidates as the wide-bandgap light absorber for the tandem application to match the bandgap of silicon, considering its continuously tunable bandgap from 1.6 eV to 2.3 eV with different bromide incorporation ratio. However, the application of the wide-bandgap lead mixed halide perovskite based solar cells has been reported to face several challenges including high intensity of defects, light instability, phase separation, etc. This thesis aims to provide the recent work during my master program involved in the understanding of (1) the characterization of the optoelectronic property of wide-bandgap organolead mixed halide perovskite (MAPbX3), (2) bandgap tunable control of the thin film fabrication process and film post-treatment, (3) device interface and charge transport layers that dramatically influence the efficiency in the MAPbX3 devices, (4) the stability of the MAPbX3 thin films. iii ACKNOWLEDGEMENT First, I would like to express my sincere appreciation to my advisor, Professor Jinsong Huang, who has supported me in my whole master program with his strong expertise and insightful understanding in photovoltaic fields. I thank him for fostering a good and resourceful lab group to conduct research and to receive support from the start of my research career. I have never been more productive in my life than these past two years under his guidance. Through the process of designing the experiments, analyzing the results, writing a peer-reviewed paper, I have learned so much with his patient training. It is his guidance which helped motivate me to explore more and more in this field of study and publish the work we have achieved. Second, I want to express my special thanks to my master degree committee members, Professor Mehrdad Negahban from the Department of Mechanical and Materials Engineering, and Professor Bai Cui from the Department of Mechanical and Materials Engineering for serving in my master supervisory committee. It is my honor to invite you as my master supervisory committee …

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ferroelectric solar cells based on inorganic–organic hybrid perovskites

Ferroelectric solar cells based on ferroelectric oxides have attracted significant attention owing to many unique advantages, such as the switchable photocurrent and photovoltage, and the above bandgap open circuit voltages. However, the small photocurrent densities of the typical ferroelectric solar cells greatly limit their photovoltaic performance. In this report, we experimentally revealed ...

متن کامل

Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance

Hybrid (organic–inorganic) lead trihalide perovskites have attracted much attention in recent years due to their exceptionally promising potential for application in solar cells. Here a controlled one-step method is presentedwhere PbCl2 is combinedwith three equivalentsmethylammonium halide (MAX, with X1⁄4 I and/or Br) in polar solvents to form MAPb(I1 xBrx)3 perovskite films upon annealing in ...

متن کامل

Spectral dependence of direct and trap-mediated recombination processes in lead halide perovskites using time resolved microwave conductivity.

Elucidating the decay mechanisms of photoexcited charge carriers is key to improving the efficiency of solar cells based on organo-lead halide perovskites. Here we investigate the spectral dependence (via above-, inter- and sub-bandgap optical excitations) of direct and trap-mediated decay processes in CH3NH3PbI3 using time resolved microwave conductivity (TRMC). We find that the total end-of-p...

متن کامل

Blue-Green Color Tunable Solution Processable Organolead Chloride–Bromide Mixed Halide Perovskites for Optoelectronic Applications

Solution-processed organo-lead halide perovskites are produced with sharp, color-pure electroluminescence that can be tuned from blue to green region of visible spectrum (425-570 nm). This was accomplished by controlling the halide composition of CH3NH3Pb(BrxCl1-x)3 [0 ≤ x ≤ 1] perovskites. The bandgap and lattice parameters change monotonically with composition. The films possess remarkably sh...

متن کامل

Exciton localization in solution-processed organolead trihalide perovskites.

Organolead trihalide perovskites have attracted great attention due to the stunning advances in both photovoltaic and light-emitting devices. However, the photophysical properties, especially the recombination dynamics of photogenerated carriers, of this class of materials are controversial. Here we report that under an excitation level close to the working regime of solar cells, the recombinat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016